S-13-757 (Davis Rivers Road) Emergency Bridge Replacement over Adams Creek Chesterfield County, South Carolina

February 7, 2019

SCDOT Project ID.: P038247 Terracon Project No. 7318P119E

Prepared for:

South Carolina Department of Transportation Columbia, South Carolina

Prepared by:

Terracon Consultants, Inc. Columbia, South Carolina

Offices Nationwide Employee-Owned Established in 1965 terracon.com

South Carolina Department of Transportation 955 Park Street, Room 421 Columbia, South Carolina 29201

Attn: Mr. Trapp Harris, P.E.

Geotechnical Design Engineer – Design-Build Section

Re: Geotechnical Data Report

S-13-757 (Davis Rivers Road) Emergency BRO Adams Creek

Chesterfield County, South Carolina

SCDOT Project ID.: P038247

Terracon Project Number: 7318P119E

Dear Mr. Harris:

Terracon Consultants Inc. (Terracon) has completed the geotechnical exploration and testing services for the above referenced project. These services were conducted in general accordance with the SCDOT Request for Subsurface Exploration and Laboratory Testing (SCDOT Project ID: P038247, authorized on November 5, 2018). This geotechnical data report presents the findings of the subsurface exploration and laboratory testing along with an overview of testing activities.

1.0 INTRODUCTION

The South Carolina Department of Transportation (SCDOT) has contracted Terracon to perform subsurface exploration and laboratory testing for the replacement of the S-13-757 (Davis Rivers Road) bridge over Adams Creek in Chesterfield County, SC. The purpose of this work is to develop information relative to subsurface soil and groundwater conditions at the bridge location. No geotechnical recommendations are associated with the requested scope of study.

The following sections of this report contain a summary of the activities for our field exploration and laboratory testing. The logs of the borings, the Site Location Map and the Exploration Plan are included in Appendix A. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

Terracon Consultants, Inc. 521 Clemson Road Columbia, South Carolina 29229 P [803] 741 9000 F [803] 741 9900 terracon.com

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

2.0 PROJECT DESCRIPTION

The project site is located at the bridge crossing of S-13-757 (Davis Rivers Road) and Adams Creek in Chesterfield County, South Carolina. It is our understanding that the project will include the replacement of the previously damaged bridge with a new structure on the existing or similar horizontal alignment. The original structure appears to have been supported with round timber piles and steel H-piles.

3.0 GEOTECHNICAL TESTING

The geotechnical exploration for this project was performed between January 31 and February 6, 2019. The results of our field work and our associated laboratory testing is attached in Appendixes A and B of this report.

3.1 Field Exploration

Our field exploration at the site consisted of the following:

Two (2) Standard Penetration Test (SPT) Borings (B-1 and B-2)

The tests were performed at the approximate locations provided by the SCDOT. A description of our testing methods and graphical logs outlining the soil conditions at each test location are presented in Appendix A. Test locations were established in the field by Terracon and surveyed by Construction Support Services, LLC, after completion. Photographs of the drill rig set up at each boring location are provided in Appendix A.

3.2 Laboratory Testing

The following laboratory tests were performed on the soil samples collected at the site.

- Eight (8) Natural Moisture Content Tests
- Eight (8) No. 200 Wash Tests
- Six (6) Atterberg Limits Tests
- Six (6) Unconfined Compressive Strength of Rock

The general scope of the laboratory testing frequency was determined by the SCDOT. The laboratory procedures and results of the laboratory tests are presented in Appendix B.

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

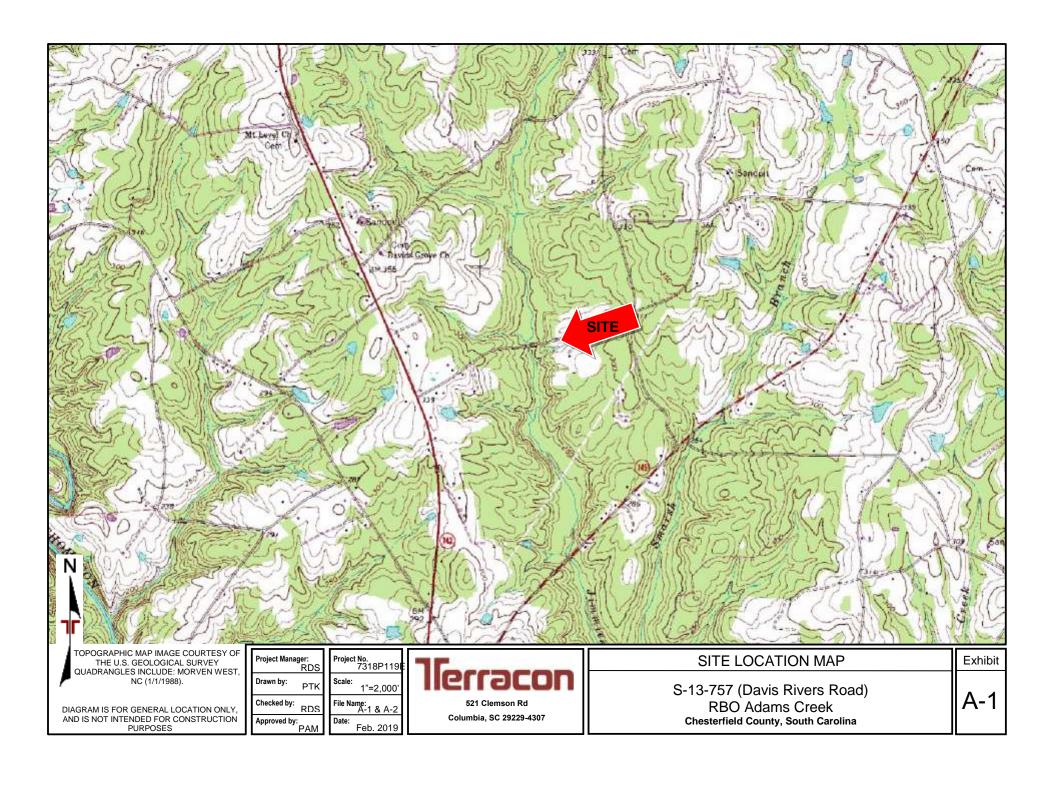
4.0 CLOSURE

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Ryan D. Starcher, E.I.T. Senior Staff Engineer


Phillip A. Morrison, P.E. Geotechnical Department Manager SC Registration No. 17275

Attachments:

Appendix A Appendix B Appendix C

APPENDIX A FIELD EXPLORATION

Exhibit A-1 – Site Location Map
Exhibit A-2 – Exploration Plan
Exhibit A-3 – Summary of Field Data
Exhibit A-4 – Field Exploration Description
Exhibit A-5 – Soil Description Terms
Exhibit A-6 – Rock Description Terms
Exhibit A-7 – Soil Rock Symbol Log
Exhibit A-8 – Boring Logs
Exhibit A-9 – Rock Photographic Log
Exhibit A-10 – Drill Rig Photograph Log

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Project Manager: Drawn by: PTK Checked by: RDS

Approved by: PAM

Scale: AS SHOWN File Name: A-1 & A-2

Date: Feb. 2019

521 Clemson Rd Columbia, SC 29229-4307 **EXPLORATION PLAN**

S-13-757 (Davis Rivers Road) **RBO Adams Creek Chesterfield County, South Carolina**

Exhibit

A-2

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

Summary of Field Data

Test No.	Ground Elevation (ft)	Test Depth (ft.)	Northing	Easting	Latitude	Longitude
B-1	252.69	39.6	1076069.721	2276390.380	N34.787403	W80.079514
B-2	252.35	47.7	1076071.917	2276306.394	N34.787411	W80.079794

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

FIELD EXPLORATION DESCRIPTION

Overview

The general testing locations were provided by the SCDOT and located in the field by Terracon by taking measurements from existing structures. The borings were surveyed by Construction Support Services, LLC after testing and drilling was complete. The locations are shown on the appended Exploration Plan.

A field log of each test location was prepared by our field engineer. The final boring logs included with this report represent the engineer's description of the encountered conditions modified as necessary based on laboratory test results of the individual samples.

Soil Test Borings (STB)

All boring and sampling operations were conducted in general accordance with the following procedures:

- SCDOT Geotechnical Design Manual 2010
- ASTM D5783, "Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geo-environmental Exploration"
- ASTM D1586 "Test Method for Penetration Test and Split-Barrel Sampling of Soils"
- ASTM D4220 "Standard Practices for Preserving and Transporting Soil"

Each boring was advanced using rotary wash drilling techniques to the planned termination depths. The sampling program is summarized in the following table:

Test ID	Total Depth	Interval of Continuous Sampling
B-1	100 feet or refusal and 20 feet of coring	0 to 10 feet
B-2	100 feet or refusal and 20 feet of coring	0 to 10 feet

Soil samples were obtained with a standard 1.4-inch I.D., 2-inch O.D., split-barrel sampler, also known as a standard split-spoon. The sampler is advanced into the soil a total of 18 to 24 inches by striking the drill rod using a 140-pound automatic hammer falling 30 inches. The number of blows required to advance the sampler for each of three to four, 6-inch increments is recorded. The sum of the number of blows for the second and third increments is called the "Standard Penetration Value", or N-value (N_{meas}, blows per foot). The N-value, when properly evaluated, is an index to the soil strength.

The borings were advanced to refusal of the drilling equipment and continued below this depth using diamond bit rock coring techniques. NQ2 sized cores were recovered from the borehole. The rock recovery ratios (REC, percentage of the total core run), Rock Quality Designation (RQD, percentage of the total core run of pieces greater than 4 inches) were recorded along with a

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

description of the rock. An explanation of the rock descriptions shown on the logs is provided in Exhibit 6. Photos of the recovered rock core specimens are provided on Exhibit A-9 of the Appendix.

Soil Classification provides a general guide to the engineering properties of various soil types and enables the engineer to apply his experience to current situations. In our exploration, samples obtained during drilling operations are examined and visually classified by a geotechnical engineer using the procedures outlined in ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). Laboratory testing was also performed on select split-spoon samples to evaluate index properties for further classification. The soils are described according to color, texture, and relative density or consistency (based on standard penetration resistance). The designations shown on the logs are described on Exhibit A-5.

Consistent with SCDOT GDM, the borings were drilled using mud rotary drilling techniques. As the drilling method introduces water into the borehole, time-of-drilling water levels could not be recorded. As noted on the boring log, the water levels of the borings were recorded at least 1 day after the start of drilling activities. These water levels are indicated on the boring logs. At the conclusion of the work, the boreholes were backfilled with sand and the borings were capped with cold-patch asphalt.

SOIL DESCRIPTION TERMS

Relative Density/Consistency Terms

I	Relative Density ¹			Consistency ²		
					Unconfined	SPT Blow
I	Descriptive Term	Relative Density	SPT Blow Count	Descriptive Term	Compression	Count
					Strength (q _u) (tsf)	
١	Very Loose	0 to 15%	4 and less	Very Soft	0.25 and less	2 and less
ı	_oose	16 to 35%	5 to 10	Soft	0.26 to 0.50	3 to 4
I	Medium Dense	36 to 65%	11 to 30	Firm	0.51 to 1.00	5 to 8
ı	Dense	66 to 85%	31 to 50	Stiff	1.01 to 2.00	9 to 15
١	Very Dense	86 to 100%	51 and more	Very Stiff	2.01 to 4.00	16 to 30
				Hard	4.01 and more	31 and more

Moisture Condition

Descriptive Term Criteria

Dry Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Wet Visible free water, usually in coarse-grained soils below the water table

Color

Describe the sample color while sample is still moist.

Angularity¹

<u>Descriptive Term</u> <u>Criteria</u>

Angular Particles have sharp edges and relatively plane sides with unpolished surfaces.

Subangular Particles are similar to angular description but have rounded edges.

Subrounded Particles have nearly plane sides but have well-rounded corners and edges.

Rounded Particles have smoothly curved sides and no edges.

HCI Reaction³

Descriptive Term Criteria

None Reactive No visible reaction

Weakly Reactive Some reaction, with bubbles forming slowly
Strongly Reactive Violent reaction, with bubbles forming immediately

Cementation³

Descriptive Term Criteria

Weakly Cemented Crumbles or breaks with handling or little finger pressure
Moderately Cemented Crumbles or breaks with considerable finger pressure
Strongly Cemented Will not crumble or break with finger pressure

Particle-Size Range¹

Gravel	Diameter, mm	Sieve Size	<u>Sand</u>	Diameter, mm	Sieve Size
Fine	4.76 to 19.1	#4 to ¾ inch	Fine	0.074 to 0.42	#200 to #40
Coarse	19.1 to 76.2	34 inch to 3 inch	Medium	0.42 to 2.00	#40 to #10
			Coarse	4 00 to 4 76	#10 to #4

Primary Soil Type^{1, 2}

The primary soil type will be shown in all capital letters.

USCS Soil Designation

Indicate USCS soil designation as defined in ASTM D-2487 and D-2488

AASHTO Soil Designation

Indicate AASHTO soil designation as defined in AASHTO M-145 and ASTM D-3282

¹ Applies to coarse-grained soils (major portion retained on No. 200 sieve)

² Applies to fine-grained soils (major portion passing No. 200 sieve)

³Use as required

DESCRIPTION OF ROCK PROPERTIES

WEATHERING

Fresh Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.

Very slight Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright.

Rock rings under hammer if crystalline.

Slight Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In

granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer.

Moderate Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull

and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength as

compared with fresh rock.

Moderately severe All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority show

kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick.

Severe All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to strong soil.

In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock usually left.

Very severe All rock except quartz discolored or stained. Rock "fabric" discernible, but mass effectively reduced to "soil" with

only fragments of strong rock remaining.

Complete Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small, scattered locations. Quartz may

be present as dikes or stringers.

HARDNESS (for engineering description of rock – not to be confused with Moh's scale for minerals)

Very hard Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of

geologist's pick.

Hard Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.

Moderately hard Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of

a geologist's pick. Hand specimens can be detached by moderate blow.

Medium Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small chips

to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.

Soft Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in

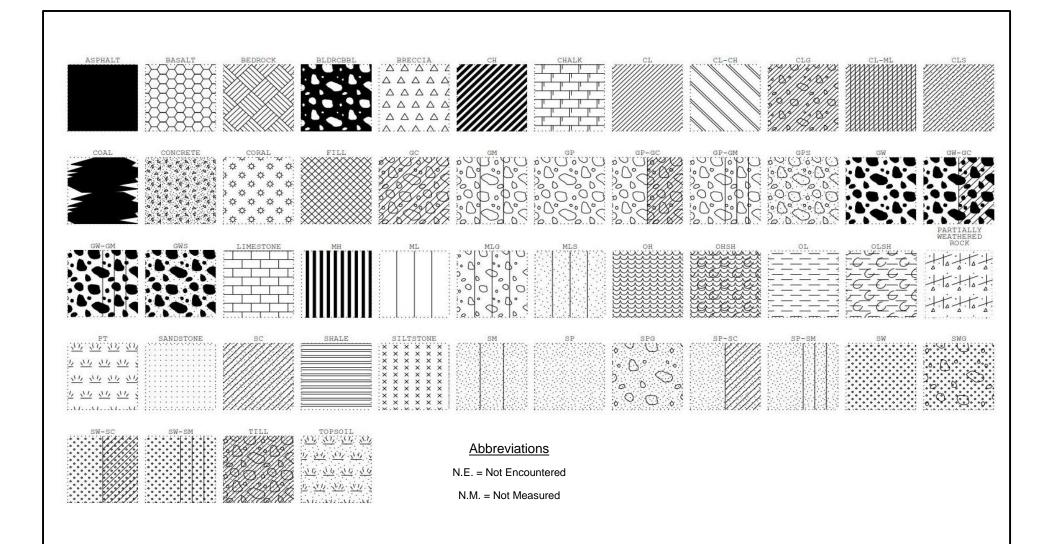
size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.

Very soft Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be

broken with finger pressure. Can be scratched readily by fingernail.

Joir	nt, Bedding, and Foliation Spacing in Ro	ock ^a
Spacing	Joints	Bedding/Foliation
Less than 2 in.	Very close	Very thin
2 in. – 1 ft.	Close	Thin
1 ft. – 3 ft.	Moderately close	Medium
3 ft. – 10 ft.	Wide	Thick
More than 10 ft.	Very wide	Very thick

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.


Rock Quality De	signator (RQD) a
RQD, as a percentage	Diagnostic description
Exceeding 90	Excellent
90 – 75	Good
75 – 50	Fair
50 – 25	Poor
Less than 25	Very poor

a. RQD (given as a percentage) = length of core in pieces4 in. and longer/length of run.

Joint Openne	ss Descriptors
Openness	Descriptor
No Visible Separation	Tight
Less than 1/32 in.	Slightly Open
1/32 to 1/8 in.	Moderately Open
1/8 to 3/8 in.	Open
3/8 in. to 0.1 ft.	Moderately Wide
Greater than 0.1 ft.	Wide

References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. <u>Subsurface Investigation for Design and Construction of Foundations of Buildings.</u> New York: American Society of Civil Engineers, 1976. U.S. Department of the Interior, Bureau of Reclamation, <u>Engineering Geology Field Manual</u>.

Project Manager:	1	Project No.
PAI	M	7318P119E
Drawn by:	П	Scale:
, KJ	Z	N.T.S.
Checked by:	П	File Name:
KJ	Z	Soil – Rock – Log
Approved by:		Date:
PAI	M	February 7, 2019

FAX. (803) 741-9900

PH. (803) 741-9000

SOIL / ROCK / LOG SYMBOL LEGEND

		O38247	0 75-	, (D	:- <u>-</u> -) '`	DD ^		unty:		nest	erfie	d		В			D.: B		7	_
ite Des			პ-/57	- `				KRO	Adan	ns Cree		ot.					_	oute		-13-		_
ng./Ge lev.:				Boi		ocati		_ongit			Offs			Data	Cto		Jignı J.	men		Mair		_
	252.4			I Dont		8740	ა ∣ ւ 3.2 ft				_	9514			Sta				_	1/20		
otal De	•	47.7 ft	301	I Dept					re De	•		9.5 ft		Date	Cor				Used	/201		(
ore no Prill Ma		meter (in): CME-45/		Drill			RW/	guratio					red:			<u>V</u>					Y 7 10	
ore Si		NQ2	543	Drille		BH		RC		Hamme	_		TO		N.A.		Ene		Ratio	_	7 . 1 ?) ft	0
JOI E SI	Ze.	NQZ		חווופ	<i>7</i> 1 .	рп				Ground	ıwa	lei.	10	.	IN.A.	_		24	пк	20	ו נ	
																	•	SPT	N VAL	UE ①		_
Elevation (ft)	Depth (ft)	MATE		DES	CRIP	TION		Graphic Log	Sample Depth	Sample No./Type	1st 6"	"9 pt	3rd 6" 4th 6"	N Value					MC ONTI			
ш	0.0	Existing Road ASPHALT (4		2)					0.3		18	7 0	<u></u> 2 4		0 1	0 2	0 30	40	50 6	0 70	80	_(
	0.3			,			/		0.3					١							:	
	_	Loose to med strong brown cemented, fir (SC) (A-6) 7.5	, angu ne to m	lar, nor nedium	n-reac	tive, w	eakly ND		2.0		3		5 4	11								
-	-	@SS-2 - NM)=35.5	5			4.0	- SS-2	3	3	2 1	5			O :	A				
247.4	- 6.0_								6.0	- SS-3	2	2	2 2	4	•						- :	
-	_	Firm, moist to non-reactive, (A-7-6 (21)) 5	Fat C	LAY wi	yello ith sar	w, nd (CH)			- SS-4	3	3	3 4	6	•		≫		×		A	
	8.0_	@SS-4 - NM PL=28, PI=26		%#200)=75.7	', LL=5	54,		8.0	- SS-5	3	3	6 5	9								
242.4 -	-	Stiff, moist to non-reactive, 7.5YR 5/6					(A-6)			-												
_	12.0_	Very stiff, we Sandy Lean (
_	_	@SS-6 - NM PL=30, PI=29	C=21, 9	%#200)=55.7	', LL=4	19,		13.5	SS-6	4	7 1	1	18		•	 		→			
237.4-	-																	:				
_	17.0 _ -	Very dense, v non-reactive, (SM) (A-6 (1)	weakl	y ceme	ented,	igular, Silty S	SAND		18.5	-												
232.4	- -	@SS-7 - NMe PL=25, PI=11 ▼	C=18, 1	%#200)=38.8	8, LL=3	86,			SS-7	26	31 3	39	70		С	× :	**		•		
-	-									_												
-	=								23.5	_												
227.4-	-									SS-8	20	26 2	27	53					•			
_	-									_											:	
								LE	GENE)								Cor	ntinue	ed N	ext	P
UD - L				TYPE NQ - R CU - C CT - C	uttings	6			CF	SA - Hollo FA - Cont C - Drivii	nuoı	ıs Fli	uger			RW			Wash ore			

Project	ID: P	O3824									unty:		Che	sterf	field	l	E	3orin	g No.			
Site De			S-13	3-757	(Dav	is Riv	vers	Road) RBO	Adan	ns Cre	_							Route:		13-757	7
Eng./G	eo.: R	DS			Boı	ring L	_ocat					0	ffset:					Align	ment		1ain	
	252.4		Latit	_			8740		Longit			30.	0795°		_		Starte				/2019	
Total D	•	47.7			I Dept			3.2 ft		ore De			19.5			ate	Comp			2/6/2		
Bore Ho			<u> </u>	3			-		gurati	on			r Req			Υ	N		iner l			(1
Drill Ma			1E-45/	543				RW	/RC		Hamr							Ene			97.1	
Core Si	ze:	NQ2			Drille	er:	BH	ł			Grou	nd	water	: T	OB	1	۱.A.		24F	IR	20 ft	
																			SPT N	\/^		
Elevation (ft)	Depth (ft)	1	MATE	RIAL	DES	CRIP	TION	1	Graphic Log	Sample Depth	Sample No /Type	od f	1st 6" 2nd 6"	3rd 6"	4th 6"	N Value	0 10	PL ★	NES C	//C ⊖ ONTEI	LL X NT (%) 70 80	
_	28.2-		SAL AT			- SET	CASI	NG		28.1 28.2		9 50	0/0"			50/0"						
222.4	30.5	SEDIM	BEGIN (MENTA) aminate	RY SI	LTSTO	NE, g	reenis	sh k, B,		30.5	NQ-	1					REC=	=98%,	RQD=	43%		
-	-	Ť, Šu, ∕@NQ-	CI, PI & 1: %Re 44, 3 ft	& Ir, V ec=98°	C, S (0 %, RQI	SLEY1 D=43%	5/5G	_1)		30.3	-											
-	-	gray, la T, Su,	MENTA aminate Sd & M 2: %Re	ed, fin ⁄lica, F	e, frest PI, C, S	n, wea (GLE	k rock Y1 5/5	k, B, 5G_1)			NQ-	2					REC=	=100%	, RQD:	=63%		
217.4	35.5	RMR=	39, 2 ft MENTAl aminate	/min, o	q _u =251 LTSTO	2 psi NE, g	reenis	sh		35.5	i =											
-	- - -	T, No. 5/5G_ @NQ-	, No, Pl	l & Ir, ' ec=95°	VC, S 8 %, RQI	& SIk (D=44%	(GLE)	/1			- NQ-	3					REC=	=95%,	RQD=	44%		
212.4 -	40.6		MENTA aminate			_		_		40.6	- i -											
-	-	T, Su, 5/5G_ @NQ-	CI, PI	& Îr, \ ec=100	/Ċ, S & 0%, RC	Slk (0 2D=73	GLEY	1			- NQ-	4					REC=	=100%	, RQD:	=73%		
207.4	45.5							-		45.5	- - -											
-	47.7	gray, la	MENTA aminate , No, Pl 5: %Re	ed, fin I & Ir,	e, fresh VC, S (n, wea	ık rock /1 5/5	k, B, G_1)			NQ-	5					REC=	=98%,	RQD=	15%		
-	71.1 - -	7 ft/mi																				
202.4 -	- - -										- -											
	_								LF	GENI	<u> </u> 						:					
		ed Sam	ple		TYPE NQ - R CU - C CT - C	uttings	3			HS CF	SA - Ho FA - Co C - Dri	ntin	iuous F	Flight	er			V - R	otary V			

Project	ID: P	O3824									oun			hes	ter	field	t		В	orin	ıg N	lo.:	B-2		
Site De			S-13	3-757	' (Da	vis Ri	vers	Road) RBC	Adar	ทร									F	Rou	te:		13-7	57
ng./G	eo.: R	DS			Во	ring I							Offs	et:					Α	lign	ıme			/lain	
lev.:	252.7		Latit	ude:		34.7	⁷ 874		Long	tude:		-80	.07				Date	Sta	rtec	l:				2019	
otal D	•	39.6			I Dep			9.3 ft		ore D	ept			0.3			Date							2019)
		meter	<u> </u>	3		-		_	igurat	ion		Line			_		Y	(-				sed:		
	chine:		IE-45/	/543		Meth			/RC			ımme			_					Ene				97	
Core Si	ze:	NQ2			Drill	er:	Al	VI			Gr	ound	lwa	ter:	_ T	OE	3	N.A.			_ 2	24H	R	N.I	<u> </u>
																		Π		_	SD.	T NI	VALL	IF A	
																					0.			,_ .	
Elevation (ft)	t ,								je ,	.ae ae	_ .	Sample No./Type					Ine			PL ×		(<u> </u>	X	,
eva (ft)	Depth (ft)	ľ	MATE	RIAL	DES	CRIP	IOIT	N	Graphic	Sample Depth	€	am) D./T	1st 6"	2nd 6"		9	N Value			▲ FI	NES	s CC	NTF	NT (9	6)
□	0.0	Existin										υž	1st	Zuc	3rd	4th	Z	0 1						70	
	0.5	ASPH/	ALT (6	inche	s)				-777	0.5	5 -							1							:
-	-	Loose,									{	SS-1	3	2	3		5	•	×	-	×▲				
4	2.0_	non-re ⊓ mediui								2.0	$^{p}+$							1					:	:	:
		@SS-	1 - NM	C=21,								SS-2	3	3	3	3	6						:	:	:
		PL=18								4.0		JU-Z		J	J	J	J							:	:
-	-	Loose	wet, b	rownis	sh yell	ow, an	ngular	,		4.0	$^{\prime}+$							1					i	:	:
247.7	_	non-re									- 5	SS-3	3	3	2	2	5						- :		<u>:</u>
	6.0	mediui 6/8	II, Clay	yey SA	AIND (3	SC) (A-	-2-0)	IUIK		6.0	0														
		Very lo	ose m	noist t	orowni	sh vell	low. a	ngular		₹ ₹]							:
+	-	non-re	active,	weakl	ly cem	ienťed,	fine	to	, <i>[]]</i>		- 5	SS-4	1	2	1	1	3	•					:		:
_	8.0_	coarse ∖6/6	e, Claye	ey SAN	ND (S	C) (A-2	2-6) 1	0YR		8.0	o														
		Very lo	2000 17	noiet k	orowni	ch voll	low		1			20.5		_	_	•							:		:
1		subang	gular, r	non-rea	active	, weak	ly				7 '	SS-5	2	2	2	2	4			X	,		:	:	:
242.7	-	cemen			nediun	n, Silty	SAN	D (SM)		+													÷	<u>:</u>
_	_	(A-7-6) @SS-	•		%#20	0=42.8	2 II=	-11			4														
	12.0	PL=28			70# 2 0	U -1 2.0	J, LL-	 1,																	:
1		Very lo	ose m	noist I	iaht re	d and	ıular				1												:		:
-	-	non-re	active,	weakl	ly cem	ented,		еу		13.5	5 _												:		
-	_	SAND @SS-6					,				-	SS-16V	ΔLI/1	2"	1		1				•				
237.7-		@SS-6	o - INIVI	C=43,	%# Z U	0=35.0	J				L	3 3-w v)	12	'		'					0			
231.17														_						_		_		:	:-
+	-										+												:	:	:
4	17.0_	\/on: -	onee :	moist	bluish	ara:	ouka:	andar	- 1///		+												÷		:
		Very d non-re								:													i	:	:
		(SM) (A-6) G	LEY2	6/10B		•			18.5		20.7	155	0/4"			E0/4"					/ 🛕	i	:	:
-	19.3	_@SS-7 ∖PL=28			%#20	0=46.7	7, LL=	- 40,		19.2		SS-7 SS-8					50/1" 50/0"			×		^	:	:	:
232.7	-	REFU:			FFFT	SET	. СФ 6	ING	' 💹	3	-									:			:	- :-	<u>:</u>
		AND E				521	J, 10			3													:	:	:
		SEDIM																					:	:	:
1		gray, la T, Sp,									7	NQ-1						RE	C=7	3%,	RQ	D=2	3%		:
-	-	@NQ-	1: %Re	ec=73°	%, RC	D=239		_ ′		3	+								:				:	:	:
		RMR=	34, 3 ft	t/min, o	q _u =166	60 psi		•			4												:	:	:
007.7	24.9									24.9	9 L												:	:	:
227.7		SEDIM																					÷	÷	\vdots
4	-	gray, la T, Su,	ammate Cl & M	eu, fin II, PI, \	e, rres /C, S	n, wea & Slk (ak (OC (GLE)	к, в, Y1		à	+												:	i	:
		5/5G_		. ,	, =				<u> </u>	3													:	<u>:</u>	<u>:</u>
			0.41	1PLER	TVD				LE	GEN	D					<u> </u>	** 1 11	10.14	التيا	100		onti	nue	d Ne	xt P
	Split Spo				NQ - F	Rock Co		-7/8"				Hollo				er	RILLIN		RW	- R	otar	y W			
		oed Sam re, 1-1/8'				Cuttings	s ious T	iuho				Conti Drivir				Αu	gers		RC	- R	lock	Cor	е		

		30			' 9				_			T = -									
		O3824								unty		Cheste	erfie	ld		Bor	ing N	_			
Site De			S-13	-757	(Davis			I) RBO	Adan	ns C							Rout			3-757	7
	ieo.: R		1 414	1			cation:		4 •			Offset:		D :	O+		gnme		_	ain	
Elev.:			Latitu				7411	Longi				079794	_	Date				_	2/3/2		
Total D		39.6			Depth:		19.3 ft		ore De			20.3 ft		Date		•			2/6/2		•
		meter (3			ler Conf		on			r Requi					Line			Y 07.40	<u>N</u>
Drill Ma		NQ2	IE-45/5	_	Drill Me Driller:		a: ∣Rw AM	//RC				r Type: water:	TO		N.A.		nergy	Ka 4HF	_	97.1 N.E.	%
Core 3	ize.	NQZ			Driller:		AIVI			Gro	una	water.	10	D	IN.A.		\ Z'	4MF	(IN.⊏.	
																	● SPT	NV	'ALUE	•	
_											a)					P	'L	MC		LL ×	
Elevation (ft)	Depth (ft)		4 A T C C		DECOD	UDT	ON	Graphic Log	Sample Depth	r) nple	No./Type			Value		>		0		\rightarrow	
ilev (f	e E	IN	VIAIEF	KIAL	DESCR	(IPT)	ION	Gra	San	San	\ <u>`</u>	1st 6" 2nd 6"	ord o 4th 6") > : Z			FINES				
	_	@NO '	2: % Day	c=80º/	6, RQD=1	15%	GSI-20	\///				~	<u>v</u> 4				30 40			70 80	90
_		3 ft/mir	2. 701 CC	C-00 /	0, I(QD=	10 70,	001-20,			NC	J-2				REC)=8U	%, RQE)=15)% <u>:</u> :	: :	:
									3												
-																:		:	:		:
222.7-	29.9	SEDIM	IENTAR	RY SII	TSTONE	. are	enish		29.9	'	_				+ :	:	: :	- :	:	: :	<u>:</u>
_		gray, la	aminate	d, fine	, fresh, w	veak	rock, B,		1	1						:		:	:		:
		T, No, 5/5G_1		& Ir, V	/C, Slk &	S (G	LEY1									:		:			:
-	1 1	_	-	c=44%	6, RQD=0)%, C	SSI=20, 4			NC	Q-3				REC)=44°	%, RQE)=0 [:] 9	6 <u>:</u>		:
-	-	ft/min					,			-						:		:	i		:
_									3	1						:		:	:		:
~	34.8								34.8	3] :	:		:	:		
217.7-	1 1				TSTONE , fresh, w					1					:	÷	: :	- :			:
=		T, No,	No, Pl	& Ir, V	, ilesii, w /C, S (GL	EY1	5/5G_1)		}	-						i		:	i		
-		@NQ-4	4: %Re	c=78%	6, RQD=3	30%,	GSI=30,		1	NG					DE C	-700	%, RQ[)-20	10/		:
		RMR=	39, 4 ft/i	min, q	_u =1820 p	Si				INC	J-4				REC	J=1.0	%, KQL)=3U)70 : :		
_	1 1									7					:	÷		:			
-	39.6									-						÷					
212.7-		CORIN	IG TER	MINA	TED AT 3	39.6 I	FEET			-					1				- i-	+ +	<u> </u>
_																:		:	:		:
																:		:	:		:
-	1 1									1						÷		:			:
-	-									4						:		:			:
_]														:	:		:	:		:
																i		:	i		:
207.7-										1						÷	<u> </u>	- :			:
-	-									4						i		:			
_]]														:	÷		:	i		:
																:		:			:
-										1								:			:
-										+					:	:		:	:		:
202.7-										1					1	:		:	- :		- :
202.1																:		:	:		:
-	† †									1						:		:	:		:
-	-									4						i		:	i		:
_																:		:	:		:
																i		:			i
	1							IF	GENI	 D					1 .	•		•	•	• •	-
			CAMI					ᆫ	OF IN					ZDII I IN							

SAMPLER TYPE

NQ - Rock Core, 1-7/8"

CU - Cuttings

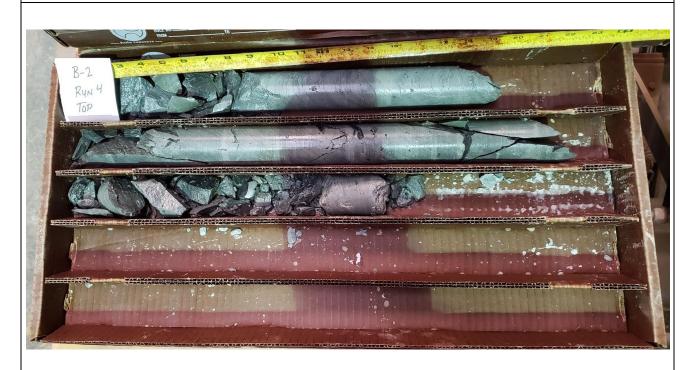
CT - Continuous Tube SS - Split Spoon UD - Undisturbed Sample AWG - Rock Core, 1-1/8"

HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing

DRILLING METHOD er RW - Rotary Wash Augers RC - Rock Core

SC_DOT 7318P

B-1: NQ-1: 28.2-30.5 feet; NQ-2: 30.5-35.5 feet; and NQ-3: 35.5-40.6 feet



B-1 NQ-3: 35.5-40.6 feet, cont.; NQ-4: 40.6-45.5 feet; and NQ-5: 45.5-47.7 feet

B-2 NQ-1:19.3-24.9 feet, NQ-2: 24.9-29.9 feet, and NQ-3: 29.9-34.8 feet

B-2 NQ-4: 34.8-39.6 feet

Geotechnical Data Report
S-13-757 (Davis Rivers Road) RBO Adams Creek ■ Chesterfield County, SC
February 7, 2019 ■ Terracon Project No. 7318P119E/Project ID.: P038247

Drill rig on B-1

Drill rig on B-2

APPENDIX B LABORATORY TESTING

Exhibit B-1 – Laboratory Testing Description Exhibit B-2 – Summary of Laboratory Data Laboratory Data Sheets

S-13-757 (Davis Rivers Road) RBO Adams Creek • Chesterfield County, SC February 7, 2019 • Terracon Project No. 7318P119E/Project ID.: P038247

LABORATORY TESTING DESCRIPTION

The samples collected during the field exploration were taken to our laboratory for additional testing. The laboratory testing program was developed by the SCDOT. Using the provided testing program, the laboratory tests were conducted on selected soil samples from the borings. The test results are presented in this appendix.

The laboratory test results were used to confirm the soil descriptions presented on the boring logs in Appendix A. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, SCDOT or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

Materials Finer Than 75-µm (No. 200) Sieve

Liquid Limit, Plastic Limit and Plasticity Index of Soils

Determination of Moisture Content of Soils

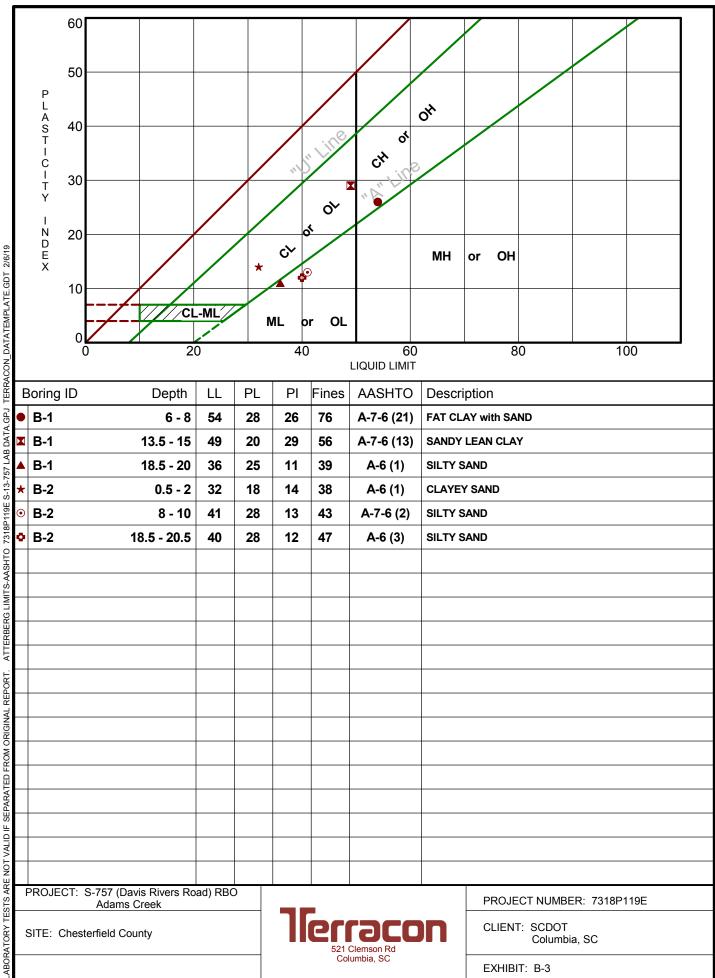
Compressive Strength of Rock Cores

AASHTO T11/(ASTM D1140)

AASHTO T89/90/(ASTM D4318)

AASHTO T265/(ASTM D2216)

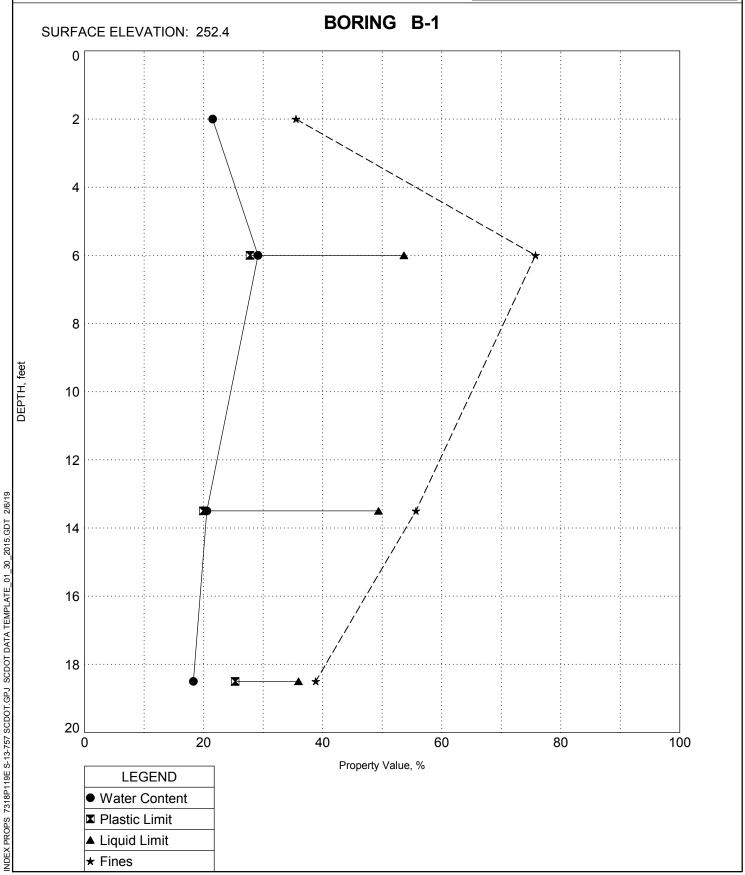
AASHTO T226/(ASTM D7012)


Summary of Laboratory Results

	,		mary of Labor			Sheet 1 of	
BORING ID	Depth (Ft.)	% Fines	Liquid Limit	Plastic Limit	Plasticity Index	Water Content (%)	
B-1	2 - 4	35.5				22	
B-1	6 - 8	75.7	54	28	26	29	
B-1	13.5 - 15	55.7	49	20	29	21	
B-1	18.5 - 20	38.8	36	25	11	18	
B-2	0.5 - 2	38.1	32	18	14	20	
B-2	8 - 10	42.8	41	28	13	26	
B-2	13.5 - 15.5	35.0				43	
B-2	18.5 - 20.5	46.7	40	28	12	16	
PROJECT: S	S-757 (Davis Rive Adams Creek	rs Road) RBO	75		PROJECT NUMBER: 7318P119E		
SITE: Chesto	erfield County		Terracon 521 Clemson Rd		CLIENT: SCDOT Columbia, SC		
		521 Clemson Rd Columbia, SC		EXHIBIT: B-2			

ATTERBERG LIMITS RESULTS

ASTM D4318

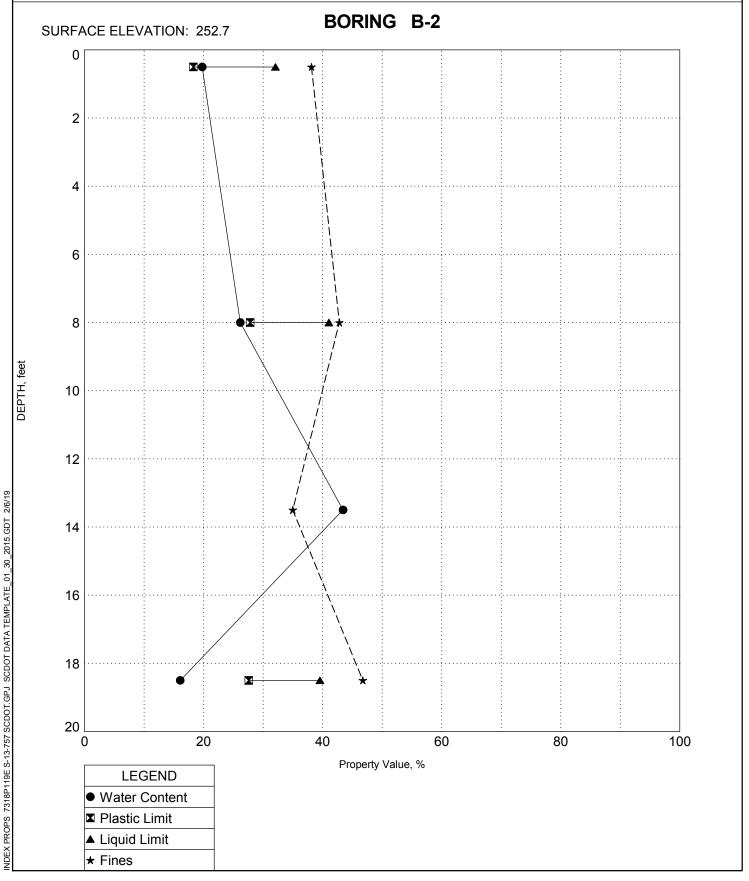


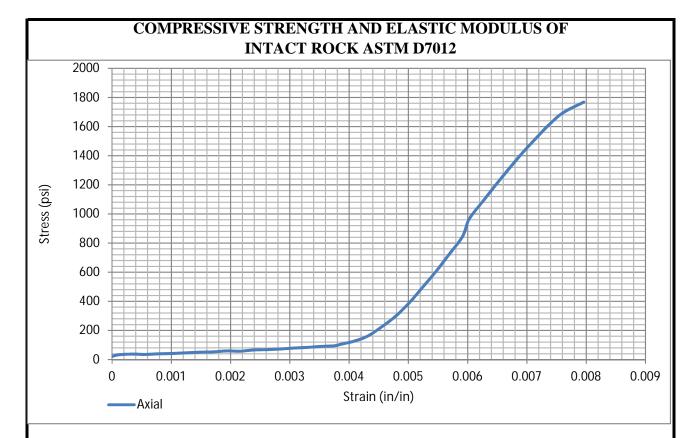
INDEX PROPERTIES VERSUS DEPTH

PROJECT ID PO38247

PROJECT NAME S-13-757 (Davis Rivers Road) RBO Adams Creek

PROJECT COUNTY Chesterfield




INDEX PROPERTIES VERSUS DEPTH

PROJECT ID PO38247

PROJECT NAME S-13-757 (Davis Rivers Road) RBO Adams Creek

PROJECT COUNTY Chesterfield

	SAMPLE	E LOCATION					
Boring:	Boring: 1-B-1 Depth (feet):						
	SPECIMEN	INFORMATION	1				
Sample No.:	1	Mass (g):	483.94				
Length (in.):	4.42	Diameter (in.):	1.82				
L/D Ratio:	2.42	Density (pcf):	159.63				
	TEST	RESULTS					
Failure Load (lbs	s):		4,620				
Failure Strain (%	n):		0.80				
Unconfined Com	pressive Streng	gth (psi):	1,768				
Elastic Modulus,	E, (ksi):	_					
Poisson's Ratio,	v:						

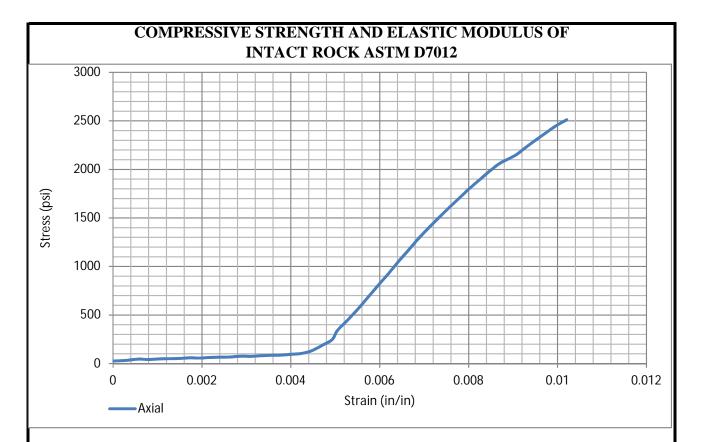
Description: GR SILTSTONE W/ PYRITE

NOTES:

CLIENT: SCDOT

PROJECT: Emergency bridge Package

2018-2


PROJECT NO.: 7318119E

LAB NO.: 847

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

SAMPLE LOCATION										
Boring:	30.5-35.5									
	SPECIMEN INFORMATION									
Sample No.:	2	Mass (g):	495.10							
Length (in.):	4.38	Diameter (in.):	1.83							
L/D Ratio:	L/D Ratio: 2.39 Density (pcf):									
	TEST	RESULTS								
Failure Load (lb	s):		6,629							
Failure Strain (%	ó):		1.02							
Unconfined Con	npressive Streng	gth (psi):	2,512							
Elastic Modulus	, E, (ksi):									
Poisson's Ratio,	ν:									

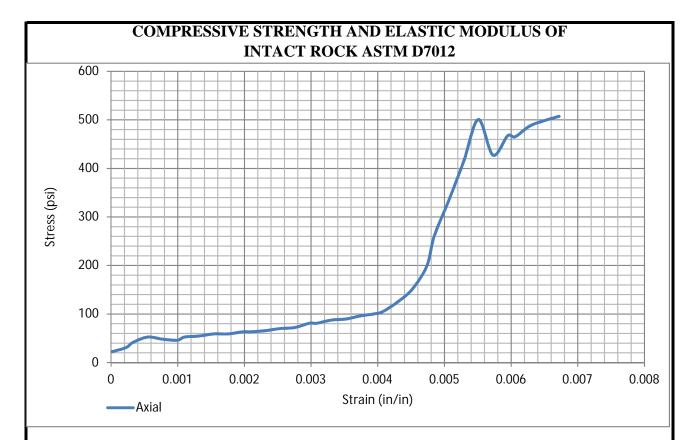
Description: GR SILTSTONE W/ PYRITE

NOTES:

CLIENT: SCDOT

PROJECT: Emergency bridge Package

2018-2


PROJECT NO.: 7318119E

LAB NO.: 848

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

		SAMPLE	LOCATION				
	Boring:	Depth (feet):	35.5-40.6				
	\$	SPECIMEN 1	INFORMATION				
1170	Sample No.:	3	Mass (g):	515.75			
	Length (in.):	4.56	Diameter (in.):	1.83			
Walter State of the state of th	L/D Ratio:	2.50	Density (pcf):	164.10			
AX	TEST RESULTS						
	Failure Load (lbs	1,332					
	Failure Strain (%	0.67					
849	Unconfined Com	507					
	Elastic Modulus,						
	Poisson's Ratio, v	<i>y</i> :					
GR SILTSTONE W/ PYRITE							

NOTES:

Description:

CLIENT: SCDOT

PROJECT: Emergency bridge Package

2018-2

PROJECT NO.: 7318119E

LAB NO.: 849

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

		SAMPLE	LOCATION	
	Boring:	4-B-1	Depth (feet):	40.6-45.5
	,	SPECIMEN :	INFORMATION	1
E	Sample No.:	4	Mass (g):	477.10
	Length (in.):	4.12	Diameter (in.):	1.84
	L/D Ratio:	2.25	Density (pcf):	166.69
		TEST	RESULTS	
	Failure Load (lbs	s):		8,041
	Failure Strain (%):		0.99
	Unconfined Com	3,041		
	Elastic Modulus,			
	Poisson's Ratio,	v:		

Description:

GR SILTSTONE W/ PYRITE

NOTES:

CLIENT: SCDOT

PROJECT: Emergency bridge Package

2018-2

PROJECT NO.: 7318119E

LAB NO.: 850

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

	SAMPLE LOCATION								
Boring:	19.3-24.9								
	SPECIMEN INFORMATION								
Sample No.:	1	Mass (g):	362.17						
Length (in.):	Length (in.): 3.30 Diameter (in.								
L/D Ratio:	L/D Ratio: 1.79 Density (pcf):								
	TEST	RESULTS							
Failure Load (lbs	s):		4,394						
Failure Strain (%	5):		1.31						
Unconfined Con	Unconfined Compressive Strength (psi):								
Elastic Modulus	Elastic Modulus, E, (ksi):								
Poisson's Ratio,	v:								

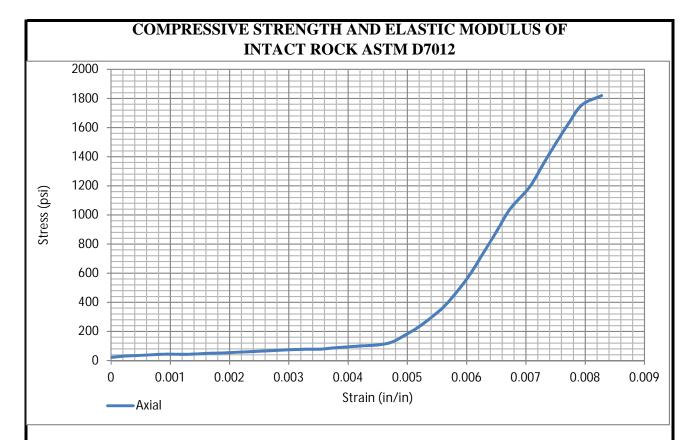
Description: GR SILTSTONE W/ PYRITE

NOTES:

CLIENT: SCDOT

PROJECT: Emergency Bridge Package

2018-2


PROJECT NO.: 7318119E

LAB NO.: 851

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

	SAMPLE	E LOCATION				
Boring:	6-B-2	Depth (feet):	34.8-39.6			
:	SPECIMEN	INFORMATION				
Sample No.:	4	Mass (g):	519.93			
Length (in.):	4.55	Diameter (in.):	1.84			
L/D Ratio:	L/D Ratio: 2.48 Density (pcf):					
	TEST	RESULTS				
Failure Load (lbs	s):		4,817			
Failure Strain (%):		0.83			
Unconfined Com	Unconfined Compressive Strength (psi):					
Elastic Modulus,	Elastic Modulus, E, (ksi):					
Poisson's Ratio,	Poisson's Ratio, v:					

Description: GR SILTSTONE W/ PYRITE

NOTES:

CLIENT: SCDOT

PROJECT: Emergency Bridge Package

2018-2

PROJECT NO.: 7318119E

LAB NO.: 852

DATE TESTED: 2/5/2019

DATE REDUCED: 2/7/2019

APPENDIX C SUPPORTING DOCUMENTS

Exhibit C-1 – Rig Calibration Documentation

DRILL RIG SPT HAMMER ENERGY **CALIBRATION REPORT**

Drill Rig Model CME-45C SN 406484 Terracon Drill Rig No. 543 Gaston Solar Facility

May 29, 2018 Project No. 73185061

Prepared for:

Terracon Consultants, Inc. Columbia, SC

Prepared by:

Terracon Consultants, Inc. North Charleston, South Carolina

Offices Nationwide Employee-Owned

Established in 1965 terracon.com

Geotechnical Environmental Construction Materials Facilities

Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) ■ Columbia, SC May 29, 2018 ■ Terracon Project No. 73185061

Table 2:

Energy Measurement and Analysis Summary.

D	Start	SPT	No.		EMX ³ (kip-ft)			ETR ³ (%)	
Boring	Depth ¹ (ft)	N _m (bpf)	of Blows ²	Max.	Min.	Ave.	Std. Dev.	Ave.	Std. Dev.
	28.5	27	27	0.37	0.31	0.34	0.016	97.9	4.464
	33.5	14	14	0.36	0.33	0.34	0.008	98.5	2.171
SB-2	38.5	33	33	0.35	0.34	0.34	0.003	97.1	0.776
	43.5	24	24	0.34	0.33	0.33	0.004	95.4	1.005
	48.5	31	31	0.36	0.33	0.34	0.006	96.7	1.763
		Average:		0.35	0.33	0.34	0.007	97.1	2.036

- Boring ID and depth from existing ground surface to start of SPT
 Number of blows used in energy calibration analysis; limited to measurements recorded during the second and third 6-inch sampling intervals at each depth or during the first increment if refusal were encountered 3. EMX = Maximum Transferred Energy, ETR = Energy Transfer Ratio

Hammer Blow Rate Summary.

Boring	Start Depth ¹	SPT No.			BP		
borning	(ft)	N _{meas} (bpf)	Blows ²	Max.	Min.	Ave.	Std. Dev.
	28.5	27	27	55.4	54.8	55.1	0.183
	33.5	14	14	55.4	55.0	55.2	0.107
SB-2	38.5	33	33	55.0	54.5	54.7	0.123
	43.5	24	24	46.4	45.6	46.0	0.257
	48.5	31	31	55.2	54.7	55.0	0.128
		Average:		53.5	52.9	53.2	0.159

- Boring ID and depth from existing ground surface to start of SPT.
 Number of blows used in energy calibration analysis. Limited to measurements recorded during the second and third 6-inch sampling intervals at each depth or during the 1st increment if refusal conditions were encountered.
- 3. BPM = Blows per minute

CONCLUSIONS 3.0

Energy Transfer Ratio (ETR) and Hammer Efficiency Correction (CE)

Based on our testing and subsequent analysis, drill rig CME-45C (No. 543) has an ETR of 97.1% ± 2.04%. Based on this ETR, the hammer efficiency correction (CE) is 1.62.

Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) © Columbia, SC May 29, 2018 © Terracon Project No. 73185061

1.0 PROJECT INFORMATION

ITEM	DESCRIPTION
Drill Rig Identification	CME-45C, SN 406484 (see photograph on cover page)
Drill Rig Owner	Terracon
Drill Rig Operator	Spencer Blair
Testing Date	May 24, 2018
Testing Location	Gaston Solar Facility
Terracon Project Number	73185061
Boring Identification	SB-2
Energy Measurement Depths	30.0 ft.; 35.0 ft.; 40.0 ft.; 45.0 ft.; 50.0 ft.
Hammer Type	Automatic
Boring Method	Hollow Stem Auger
Drill Rods	nAWJ n1%" outside diameter n3/16" wall thickness
SPT Calibration Testing Equipment	n2 foot AWJ rod instrumented w/ 2 strain gauges and 2 accelerometers nModel PAX Pile Driving Analyzer™ (PDA)
SPT Calibration Personnel	R. Wakeford & Z. McIntosh

2.0 TEST RESULTS

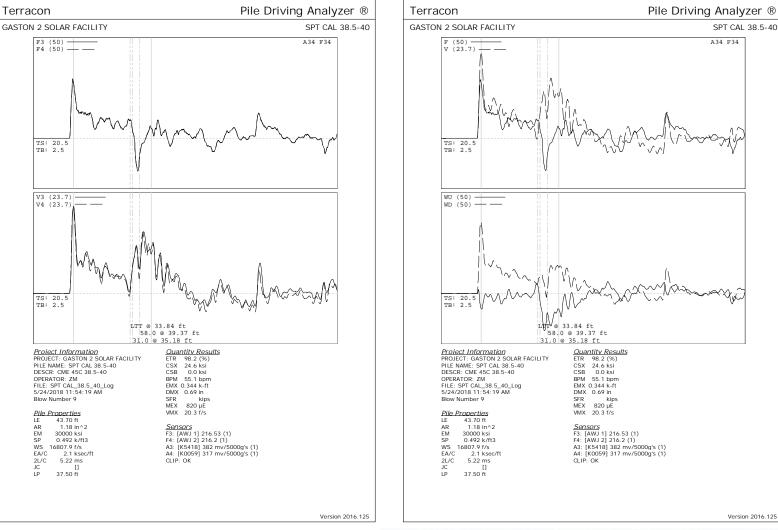
Table 1:

SPT Hammer Energy Calibration Testing Summary.

Boring	Rod Length ²	s	Rod ectio		Measured Blow Counts (blows/6 inches)				SPT N _{meas}	Soil	
	Depth ¹ (ft)	(ft)	2 ft	5 ft	10 ft	1 st Inc.	2 nd Inc.	3 rd Inc.	4 th Inc.	(bpf)	Type ⁴
	28.5	30.0	0	6	0	9	12	15	-	27	SM
	33.5	35.0	0	7	0	6	5	9	-	14	SM
SB-2	38.5	40.0	0	8	0	9	14	19	-	33	SM
	43.5	45.0	0	9	0	8	12	12	-	24	SM
	48.5	50.0	0	10	0	9	16	15	-	31	SM

- 1. Depth from existing ground surface to start of SPT
- Total rod length from instrumentation to bottom of sampler
 Two foot section is instrumented and is located at top of drill rods

4. Soil type provided by Terracon personnel.


Responsive ■ Resourceful ■ Reliable

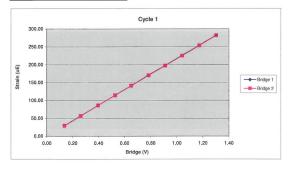
Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) ■ Columbia, SC May 29, 2018 ■ Terracon Project No. 73185061

Exhibit A-1 Representative Blow

Responsive ■ Resourceful ■ Reliable Responsive Resourceful Reliable

Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) ■ Columbia, SC May 29, 2018 ■ Terracon Project No. 73185061

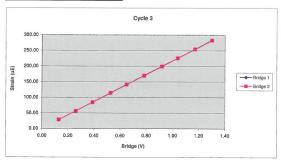
Exhibit A-2 PDA Equipment Calibrations


SPT CAL 38.5-40

A34 F34

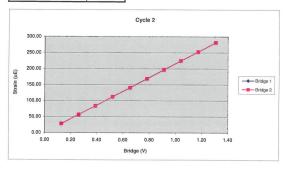
267AWJ		Cycle 1			
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)	
1	0.00	0.00	0.00	0.00	
2	1034.65	29.80	0.14	0.14	
3	1995.74	57.07	0.26	0.26	
4	3021.54	86.56	0.40	0.40	
5	4013.51	114.64	0.53	0.53	
6	4945.09	141.59	0.65	0.65	
7	5967.55	170.38	0.78	0.78	
8	6935.72	197.78	0.91	0.91	
9	7944.21	225.43	1.04	1.04	
10	8935.59	253.69	1.17	1.17	
11	9924.61	282.06	1.30	1.30	

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7636.82	Force Calibration (lb/V)	7622.38
Offset	-7.82	Offset	-11.05
Correlation	0.999996	Correlation	0.999997
Strain Calibration (µE/V)	216.43	Strain Calibration (µE/V)	216.02
Offset	0.60	Offset	0.51
Correlation	0.999996	Correlation	0.999993


Force Strain Calibration	
EA (Kips)	35284.30
Offset	-29.01
Correlation	0.999989

267AWJ	Cy	cle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	982.53	28.74	0.13	0.13
3	1993.97	56.89	0.26	0.26
4	2965.68	84.76	0.39	0.39
5	4014.49	114.61	0.53	0.53
6	4944.11	141.53	0.65	0.65
7	5962.04	170.43	0.78	0.78
8	6994.93	199.62	0.92	0.92
9	7922.38	225.92	1.04	1.04
10	8918.48	254.51	1.17	1.17
11	9909.26	283.02	1.30	1.30

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7625.63	Force Calibration (lb/V)	7613.58
Offset	-4.78	Offset	-1.05
Correlation	0.999999	Correlation	0.999998
Strain Calibration (µE/V)	217.34	Strain Calibration (µE/V)	217.00
Offset	0.23	Offset	0.33
Correlation	0.999995	Correlation	0.999998

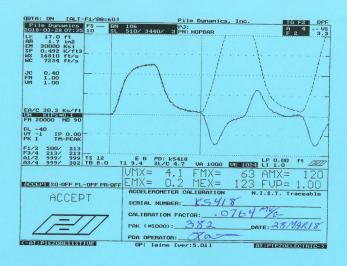

Force Strain Calibration	
EA (Kips)	35085.96
Offset	-12.70
Correlation	0.999996

267AWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	979.97	28.37	0.13	0.13
3	2002.82	57.00	0.26	0.26
4	2963.52	84.19	0.39	0.39
5	3965.12	112.62	0.52	0.52
6	4973.02	141.14	0.65	0.65
7	5964.01	169.18	0.78	0.78
8	6938.87	197.15	0.91	0.91
9	7932.41	224.93	1.04	1.04
10	8939.72	253.23	1,17	1.17
11	9962 18	281.86	1.30	1.01

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7634.65	Force Calibration (lb/V)	7626.42
Offset	-9.30	Offset	-6.45
Correlation	0.999997	Correlation	0.999997
Strain Calibration (µE/V)	215.81	Strain Calibration (µE/V)	215.58
Offset	0.30	Offset	0.38
Correlation	0.999997	Correlation	0.999996

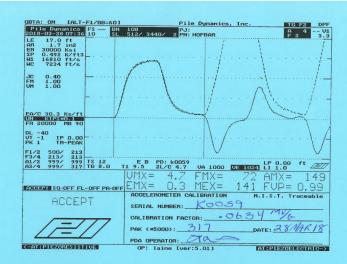
Force Strain Calibration	
EA (Kips)	35375.85
Offset	-19.88
Correlation	0.999997

Bridge Excitation (V) Shunt Resitor (ohm)


5 60.4k

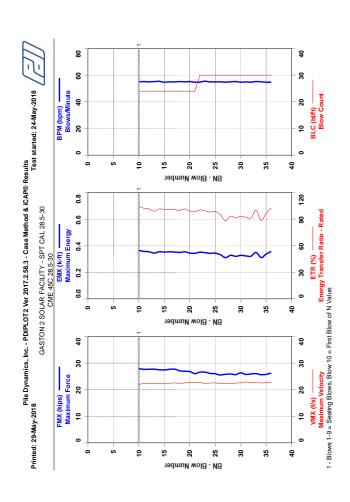
Calibration Factors	267AWJ		
Bridge 1 (µE/V)	216.53	Bridge 2 (µE/V)	216.20
EA Factor (Kips)	35248.70	Area (in^2)	1.17

Calibrated by: Naval Bradel
Calibrated Date: 12/5/2016


Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

Smart Chip Programmed By $\overline{\mathcal{A}}$, $\overline{\mathcal{M}}$ on $\overline{\mathcal{A}}$ $\overline{\mathcal{A}}$ $\overline{\mathcal{A}}$ CRC Value $\underline{6}$ $\overline{\mathcal{A}}$ $\overline{\mathcal{E}}$


Smart Sensor

Smart Chip Programmed By A.W. on 28 MAR 18 CRC Value A 7 80

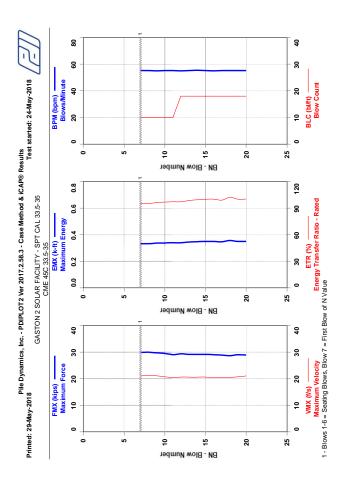
Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) Columbia, SC May 29, 2018 Terracon Project No. 73185061

Exhibit A-3 SPT Calibration Data Plots and Tables

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTON 2 SOLAR FACILITY - SPT CAL 28.5-30 OP: ZM AR: 1.18 in² LE: 33.70 ft WS: 18.807.9 ffs CME 45C 28.5-30 Date: 24-May-2018 SP: 0.492 k/ft³ EM: 30,000 ksi


WS: 1	6,807.9 f/s							JC:	0.00
FMX: Maximum Force BPM: Blows/Minute									
VMX:	Maximum Ve	elocity				DMX:	Maximum Di	isplacem	ent
EMX: Maximum Energy CSX: Compression S							n Stress	Maximum	
ETR:	Energy Tran	sfer Ratio -	Rated						
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
10	29.04	24	28	22.0	0.366	104.5	55.1	0.93	23.6
11	29.08	24	28	22.3	0.359	102.5	55.2	0.85	23.4
12	29.13	24	28	22.3	0.356	101.7	55.1	0.76	23.4
13	29.17	24	28	22.2	0.347	99.1	55.3	0.67	23.5
14	29.21	24	28	22.3	0.356	101.6	55.4	0.74	23.3
15	29.25	24	27	22.4	0.353	101.0	54.8	0.68	23.3
16	29.29	24	28	22.5	0.355	101.4	55.1	0.70	23.4
17	29.33	24	28	22.5	0.354	101.0	55.0	0.64	23.5
18	29.38	24	27	22.4	0.350	100.0	55.2	0.62	23.0
19	29.42	24	27	22.6	0.356	101.6	55.0	0.64	22.8
20	29.46	24	27	22.6	0.347	99.1	55.2	0.64	22.7
21	29.50	24	26	22.7	0.344	98.4	54.8	0.60	22.1
22	29.53	30	27	22.7	0.352	100.6	54.9	0.63	22.5
23	29.57	30	27	22.4	0.349	99.6	55.4	0.60	22.5
24	29.60	30	26	22.5	0.343	98.0	55.0	0.56	22.2
25	29.63	30	26	22.6	0.346	98.8	55.1	0.59	22.0
26	29.67	30	26	22.4	0.333	95.1	55.0	0.53	21.6
27	29.70	30	26	22.4	0.310	88.5	54.8	0.48	21.9
28	29.73	30	26	22.3	0.327	93.5	55.1	0.50	21.9
29	29.77	30	26	22.5	0.321	91.6	55.2	0.49	21.8
30	29.80	30	26	22.6	0.327	93.3	54.8	0.49	22.4
31	29.83	30	26	22.9	0.323	92.3	55.1	0.49	21.8
32	29.87	30	26	22.6	0.320	91.3	54.8	0.48	21.9
33	29.90	30	26	22.7	0.351	100.2	55.2	0.63	22.1
34	29.93	30	26	22.5	0.311	88.8	55.1	0.47	21.7
35	29.97	30	26	22.6	0.338	96.7	54.8	0.52	21.8
36	30.00	30	26	22.7	0.359	102.5	54.9	0.69	22.2
		Average	27	22.5	0.343	97.9	55.1	0.62	22.5
	5	Std. Dev.	1	0.2	0.015	4.4	0.2	0.11	0.7
		1aximum	28	22.9	0.366	104.5	55.4	0.93	23.6
	I.	Minimum	26	22.0	0.310	88.5	54.8	0.47	21.6
Total number of blows analyzed: 27									

BL# Sensors

10-36 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K5418] 382.0 (1.00); A4: [K0059] 317.0 (1.00)

BL# Comments

10 Blows 1-9 = Seating Blows, Blow 10 = First Blow of N Value

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTON 2 SOLAR FACILITY - SPT CAL 28.5-30 OP: ZM

CME 45C 28.5-30 Date: 24-May-2018

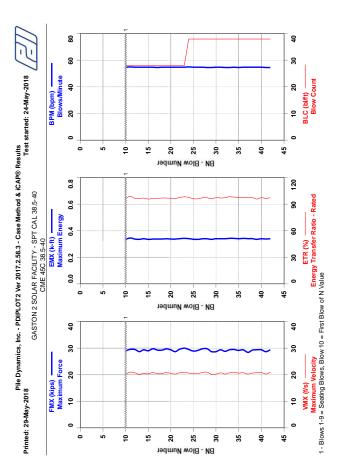
Time Summary

Drive 38 seconds 11:32 AM - 11:33 AM BN 1 - 36

Pile Dynamics, Inc.	
Case Method & iCAP® Results	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

	GASTON 2 SOLAR FACILITY - SPT CAL 33.5-35 CME 45C 33.5-35								
OP: ZN								Date: 24-M:	
AR:	1.18 in ²								492 k/ft ³
LE: 38.70 ft EM: 30,000 ksi									
WS: 16,807.9 f/s JC: 0.00									
	Maximum Fo						Blows/Minu		
	Maximum Ve						Maximum D		
EMX: N	Maximum En	ergy				CSX:	Compression	on Stress Ma	aximum
	Energy Trans	sfer Ratio -	Rated						
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
7	34.10	10	30	21.1	0.333	95.3	55.3	1.21	25.3
8	34.20	10	30	21.2	0.333	95.3	55.2	1.21	25.4
9	34.30	10	30	21.1	0.337	96.4	55.0	1.23	25.2
10	34.40	10	29	20.7	0.339	97.0	55.2	1.20	25.0
11	34.50	10	29	20.5	0.341	97.3	55.2	1.22	24.6
12	34.56	18	29	20.6	0.340	97.2	55.1	1.02	24.8
13	34.61	18	29	20.6	0.346	98.9	55.3	0.95	24.7
14	34.67	18	29	20.5	0.349	99.6	55.4	0.91	24.7
15	34.72	18	29	20.7	0.350	100.1	55.3	0.88	24.7
16	34.78	18	29	20.5	0.351	100.3	55.1	0.85	24.6
17	34.83	18	29	20.3	0.347	99.2	55.3	0.77	24.5
18	34.89	18	29	20.5	0.358	102.3	55.3	0.82	24.3
19	34.94	18	29	20.7	0.351	100.2	55.2	0.76	24.6
20	35.00	18	29	21.0	0.351	100.4	55.3	0.73	24.5
	,	Average	29	20.7	0.345	98.5	55.2	0.98	24.8
		td. Dev.	0	0.3	0.007	2.1	0.1	0.19	0.3
		aximum	30	21.2	0.358	102.3	55.4	1.23	25.4
	N	linimum	_29	20.3	0.333	95.3	55.0	0.73	24.3
Total number of blows analyzed: 14									


BL# Sensors

7-20 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K5418] 382.0 (1.00); A4: [K0059] 317.0 (1.00)

7 Blows 1-6 = Seating Blows, Blow 7 = First Blow of N Value

Time Summary

Drive 20 seconds 11:48 AM - 11:48 AM BN 1 - 20

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

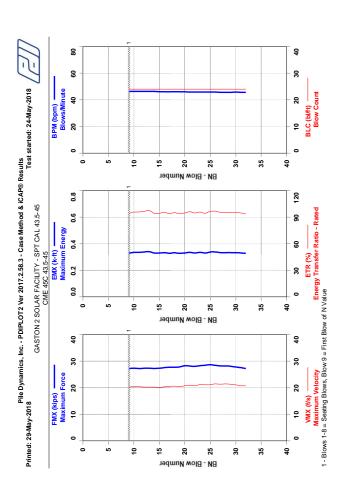
GASTON 2 SOLAR FACILITY - SPT CAL 38.5-40 OP: ZM

CME 45C 38.5-40 Date: 24-May-2018

10 Blows 1-9 = Seating Blows, Blow 10 = First Blow of N Value

Time Summary

Drive 44 seconds 11:54 AM - 11:54 AM BN 1 - 42


Pile Dynamics, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTO OP: ZM	N 2 SOLAR	FACILITY	- SPI CAL	38.5-40				CME 45C Date: 24-Ma	
AR:	1.18 in²								492 k/fi
E:	43.70 ft							EM: 30.	
	i.807.9 f/s								0.00
	Maximum Fo	rco				BDM- I	Blows/Minut		7.00
	//aximum Ve						Maximum D		nt.
	//aximum En						Compressio		
	nergy Trans		D-4-4			CSX: (Jompressio	in Stress ivia	mumixe
				1/8/0/	E1.07	ETD	DDM	DMX	
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM		CS
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	k:
10	37.54	28	29	20.2	0.336	96.1	54.6	0.58	24.
11	37.57	28	30	20.9	0.347	99.1	55.0	0.59	25.
12	37.61	28	30	20.7	0.338	96.7	54.8	0.57	25.
13	37.64	28	29	20.2	0.337	96.1	54.8	0.56	24.
14	37.68	28	29	20.5	0.340	97.1	54.8	0.56	24.
15	37.71	28	29	20.3	0.335	95.9	54.7	0.56	24.
16	37.75	28	30	20.9	0.338	96.5	54.8	0.55	25.
17	37.79	28	29	20.4	0.339	96.7	54.5	0.56	24.
18	37.82	28	29	20.4	0.339	96.9	54.8	0.56	24.
19	37.86	28	30	20.8	0.340	97.1	54.7	0.55	25.
20	37.89	28	29	20.4	0.339	96.7	54.7	0.56	24.
21	37.93	28	29	20.2	0.338	96.5	54.8	0.55	24
22	37.96	28	30	20.7	0.342	97.7	54.9	0.56	25
23	38.00	28	30	21.0	0.344	98.3	54.8	0.56	25
24	38.03	38	29	20.6	0.342	97.7	55.0	0.56	25
25	38.05	38	29	20.3	0.337	96.3	54.8	0.55	24.
26	38.08	38	29	20.3	0.337	96.2	54.7	0.54	24
27	38.11	38	30	20.4	0.340	97.1	54.8	0.54	25
28	38.13	38	30	20.8	0.340	97.1	54.6	0.54	25
29	38.16	38	29	20.2	0.336	96.1	54.6	0.53	24
30	38.18	38	29	20.2	0.341	97.5	54.7	0.53	24
31	38.21	38	29	20.7	0.340	97.1	54.7	0.52	24
32	38.24	38	29	20.3	0.341	97.4	54.6	0.51	24
33	38.26	38	29	20.7	0.344	98.4	54.5	0.51	24
34	38.29	38	29	20.9	0.343	98.0	54.7	0.51	25
35	38.32	38	29	20.6	0.341	97.5	54.5	0.50	24
36	38.34	38	29	20.8	0.342	97.8	54.7	0.50	24
37	38.37	38	28	20.2	0.342	97.7	54.7	0.50	24
38	38.39	38	29	20.6	0.341	97.5	54.7	0.49	24
39	38.42	38	29	20.7	0.335	95.8	54.7	0.48	24
40	38.45	38	29	20.8	0.341	97.5	54.7	0.49	24
41	38.47	38	29	20.3	0.339	96.7	54.6	0.48	24
42	38.50	38	29	20.9	0.341	97.5	54.6	0.49	24
		Average	29	20.6	0.340	97.1	54.7	0.53	24
		td. Dev.	0	0.3	0.003	0.8	0.1	0.03	- 0
		aximum	30	21.0	0.347	99.1	55.0	0.59	25
		linimum	28	20.2	0.347	95.8	54.5	0.39	24
	IV	m mrii ui ii			olows analyz		J4.J	0.40	24

BL# Sensors

10-42 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K5418] 382.0 (1.00); A4: [K0059] 317.0 (1.00)

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTO	ON 2 SOLAR	FACILITY	- SPT CAL	43.5-45				CME 45C	43.5-45
OP: ZN								Date: 24-Ma	ay-2018
AR:	1.18 in ²							SP: 0.4	
LE:	48.70 ft							EM: 30,0	000 ksi
WS: 16	5,807.9 f/s							JC: 0	.00
FMX: N	Maximum Fo	rce				BPM: E	Blows/Minut	te	
	Maximum Ve					DMX: N	Maximum D	isplacemen	it
	Maximum En					CSX: 0	Compression	n Stress Ma	aximum
ETR: E	Energy Trans		Rated						
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
9	44.04	24	27	20.2	0.330	94.2	46.4	0.67	23.0
10	44.08	24	27	20.4	0.335	95.8	46.3	0.65	23.2
11	44.13	24	27	20.4	0.336	95.9	46.3	0.65	23.0
12	44.17	24	27	20.3	0.339	96.8	46.3	0.69	23.1
13	44.21	24	27	20.3	0.342	97.7	46.4	0.75	23.2
14	44.25	24	27	20.2	0.330	94.4	46.3	0.64	23.1
15	44.29	24	27	20.1	0.331	94.6	46.2	0.63	23.2
16	44.33	24	28	20.3	0.334	95.4	46.1	0.65	23.3
17	44.38	24	28	20.5	0.330	94.2	46.0	0.63	23.5
18	44.42	24	28	20.6	0.333	95.0	46.2	0.62	23.5
19	44.46	24	28	20.5	0.329	94.0	46.0	0.62	23.6
20	44.50	24	28	20.7	0.332	94.9	46.0	0.62	23.9
21	44.54	24	28	20.8	0.337	96.2	45.9	0.62	23.9
22	44.58	24	28	20.7	0.332	94.8	45.9	0.62	23.7
23	44.63	24	28	21.2	0.335	95.7	45.9	0.62	24.0
24	44.67	24	28	21.1	0.331	94.5	45.9	0.61	24.1
25	44.71	24	29	21.1	0.339	96.7	45.8	0.60	24.3
26	44.75	24	28	21.4	0.339	96.9	45.8	0.78	24.0
27	44.79	24	28	21.4	0.334	95.5	45.7	0.61	23.9
28	44.83	24	28	21.5	0.335	95.7	45.7	0.60	23.9
29	44.88	24	28	21.3	0.335	95.6	45.7	0.59	23.8
30	44.92	24	28	21.0	0.334	95.4	45.8	0.63	23.5
31	44.96	24	28	20.8	0.332	94.9	45.6	0.60	23.3
32	45.00	24	27	20.7	0.329	93.9	45.6	0.57	23.0
		Average	28	20.7	0.334	95.4	46.0	0.64	23.5
		td. Dev.	0	0.4	0.003	1.0	0.3	0.05	0.4
		aximum	29	21.5	0.342	97.7	46.4	0.78	24.3
	M	linimum	27	20.1	0.329	93.9	45.6	0.57	23.0
			l'otal n	umber of b	lows analyz	ed: 24			

BL# Sensors

9-32 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K5418] 382.0 (1.00); A4: [K0059] 317.0 (1.00)

BL# Comments

9 Blows 1-8 = Seating Blows, Blow 9 = First Blow of N Value

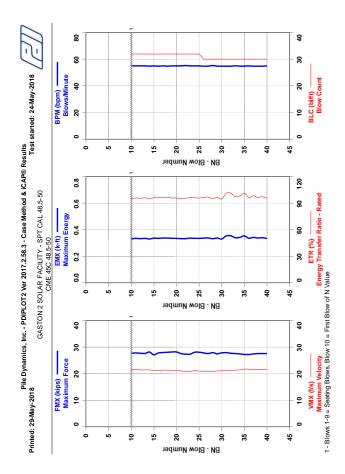
Time Summary

Drive 40 seconds 12:01 PM - 12:02 PM BN 1 - 32

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTON 2 SOLAR FACILITY - SPT CAL 48.5-50 OP: ZM AR: 1.18 in² CME 45C 48.5-50 Date: 24-May-2018 SP: 0.492 k/ft³


AR:	1.18 in ²								492 k/ft³
LE:	53.70 ft							EM: 30,	
	6,807.9 f/s								.00
	Maximum Fo						Blows/Minut		
	Maximum Ve						Maximum D		
	Maximum En					CSX:	Compressio	n Stress Ma	aximum
	Energy Trans								
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
10	49.03	32	28	21.4	0.332	94.8	55.1	0.63	23.4
11	49.06	32	28	21.7	0.336	96.0	55.0	0.63	23.6
12	49.09	32	28	21.4	0.334	95.5	55.0	0.62	23.5
13	49.13	32	28	21.4	0.337	96.2	55.1	0.63	23.4
14	49.16	32	28	21.4	0.332	94.9	54.8	0.62	23.8
15	49.19	32	27	21.2	0.337	96.4	55.1	0.63	23.0
16	49.22	32	28	21.2	0.336	96.1	54.8	0.63	23.6
17	49.25	32	28	21.4	0.339	96.8	55.0	0.64	23.7
18	49.28	32	28	21.3	0.338	96.6	54.9	0.63	23.8
19	49.31	32	28	21.2	0.336	96.0	55.0	0.63	23.9
20	49.34	32	28	21.3	0.336	96.0	55.1	0.63	23.9
21	49.38	32	28	21.0	0.333	95.1	55.1	0.63	23.4
22	49.41	32	27	20.8	0.334	95.5	55.2	0.64	23.2
23	49.44	32	27	20.8	0.338	96.4	55.1	0.65	23.2
24	49.47	32	28	21.2	0.337	96.2	55.0	0.65	23.8
25	49.50	32	28	21.0	0.335	95.8	55.1	0.64	23.8
26	49.53	30	28	20.9	0.338	96.5	54.8	0.63	23.6
27	49.57	30	28	20.7	0.339	96.9	54.9	0.64	23.4
28	49.60	30	28	20.8	0.333	95.2	55.2	0.61	23.6
29 30	49.63 49.67	30 30	27	21.0 21.1	0.338	96.5 94.8	54.9 54.9	0.65 0.58	23.3 23.6
30	49.67	30	28 28	21.1	0.332 0.355	101.4	54.9 54.9	0.58	23.6
32	49.70	30	28 28	21.1	0.355	101.4	54.9 54.9	0.88	23.7
33	49.73	30	28	21.3	0.334	97.5	55.0	0.62	23.4
34	49.80	30	27	21.4	0.344	98.3	54.9	0.00	23.2
35	49.83	30	27	21.7	0.355	101.4	54.9	0.71	23.2
36	49.87	30	27	21.7	0.337	96.4	55.0	0.59	23.1
37	49.90	30	27	21.6	0.344	98.2	54.7	0.69	23.3
38	49.93	30	28	21.6	0.338	96.6	54.8	0.59	23.3
39	49.97	30	28	21.5	0.340	97.2	54.8	0.58	23.4
40	50.00	30	28	21.6	0.335	95.7	55.0	0.58	23.4
		Average	28	21.3	0.339	96.7	55.0	0.65	23.5
		td. Dev.	0	0.3	0.006	1.7	0.1	0.07	0.3
		aximum	28	21.7	0.355	101.4	55.2	0.88	23.9
	N	linimum	27	20.7	0.332	94.8	54.7	0.58	23.0
			Total n	umber of b	lows analy	zed: 31			

BL# Sensors

10-40 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K5418] 382.0 (1.00); A4: [K0059] 317.0 (1.00)

BL# Comments

10 Blows 1-9 = Seating Blows, Blow 10 = First Blow of N Value

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2017.2.58.3 - Printed 29-May-2018

GASTON 2 SOLAR FACILITY - SPT CAL 48.5-50 OP: ZM CME 45C 48.5-50 Date: 24-May-2018

Drive 42 seconds 12:10 PM - 12:11 PM BN 1 - 40

Drill Rig SPT Hammer Energy Calibration Report CME-45C (SN 406484) Columbia, SC May 29, 2018 Terracon Project No. 73185061

Exhibit A-4 Field Log

Responsive■ Resourceful ■ Reliable

PROJECT NAME:	Gaston.	Solar	racility
PROJECT NO .:	731850	>61	
BORING NO.:	8-18	3	
CLIENT:	18		

DRILL RIG DATA

LL RIG DATA	
Truck	
C4E-456	
CHE-45C	
406484	
4-18	
NIA	
so Needed	
	Trick CHE-456 CME-456 406484 4-18

ARRIVAL TIME:	10:30	
DEPART TIME:	12:30	
TOTAL TRAVEL:	3 hr	
TOTAL TIME:	560	
CLIENT REP:		
MILEAGE:		

	_		
DATE:	5/24		
TERRACON REP:	Colonica.		
PDA MODEL/SN:	DAX	3766	
TERRACON RIG # DR#:	542		

SPT HAMMER DATA

Type:	4010
Manufacturer:	-
Lifting Mechanism:	Clain w/ Hydraulia
Model No.:	_
Serial No:	
Hammer Weight:	140 lbs
Hammer Operator(s):	Spencer and Brian

		PDA INP	UIDAIA			
Operator:	OP	ZM	Elastic Modulus (ksi):	EM	3000	
Project No./Location:	PJ	Coastan	Specific Weight (kips/ft3):	SP	0.492	
Rig Model & SN:	PN	CME-45C	Wave Speed (ft/sec):	WS	16808	
lammer Type, LM, Rods:	PD	Sudo, Chain, AUT	Increment Length (ft):	LI	0.5	
Dell Bod Aron (in2)	AR	1 18	Compling Frog (kHz)	ED	EO	

	TRANSDUCER II	NFORMATION	NOTES: Instrumentation to Bottom of Ro	od Length 25,854 2	.85:
Gage	SN	Calibration	Inches	- 85'	Feet
F1/F3:	AWJ-1	26-53			
F2/F4:	AUJ-2	216.20	SPLIT SPOON SAMPLER LENGTH	0.85	
A1/A3:	K5418	382	Guage to Bottom of Cal. Rod length	28.7	
A2/A4:	KC059	317	LE is Measured from the Center of the	Strain Guages to the bo	ottom of

Start Time	Soil	Stick Up	Dep	th (ft)	1, = (0)	Rods & Leng	44-	PDA	Blows		SPT	Blows	
Start Time	3011	Length (ft)	Start	End	LE (ft)	Rods & Leng	tns	Start	End	1st 6"	2nd 6"	3rd 6"	41170
						2ft (5ft)	10ft						N
10.50		30"	23.5	25	28.7	Sea 2ft Sft	10ft						1
11:20		41.5	24.5	26	30.7	1×2ft 5×5ft	10ft	1	109	5	5	8	13
11:32	Sand	36"	28.5	30	33.7	2ft (5ft)	10ft	١	37	9	12	15	27
11:48	Whitesad	36"	33.5	32	38.7	2ft 7,5P	10ft	i	21	6	5	9	14
11:53	Orange San	37"	38.5	40	437	2ft 8,5ft	10ft	1	F63	9	14	19	33
12:01	WhiteSand	36	43.5	45	48.7.	2ft 2x(5ft)	10ft	1	33	8	12	12	24
12:10	Sand	35"	48.5	50	53.7	2ft 10x/Sto	10ft	1	41	9	16	15	31
						2ft 5ft	10ft						
Individual pair	s of F or V si	ignals versus	time sha	all be very	similar for	good quality data.							
If you see For	ce goes nega	ative before 2	2L/C afte	r impact.	drill rod joir	nts should be carefu	Ilv tight	ened for c	nond qualit	v data			

PICTURE NUMBERS AND INFO: Take Photo of Each Rigs, Boring Locations at the Site Driling Method: (ie. Hollow Stem Augers, Mud Rotary....)

Terracon SPT Rig Calibration Worksheet